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Abstract
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1. Introduction

The earliest ideas of limit point and derived set in the space of the
real numbers were both introduced and investigated by Georg Cantor
since 1872 (see also [1, 2, 3, 4, 6]) to analyze the convergence set of a
trigonometric series. These two concepts have been generalized to the
case of any arbitrary topological space. Thus, let X be a topological space
and let A be a subset of X, we write A’ to denote the derived set of A,
that is, the set of all limit points of A. The next definition extends the

process of taking the derivative of a set for any ordinal number.

Definition 1.1 (Cantor-Bendixson’s derivative). Let A be a subset of

a topological space. For a given ordinal number o, we define, using

transfinite recursion, the a-th derivative of A, written A(OL), as follows:
e A0) _ A,
o AP+ (A(B) )’, for all ordinal B,

e A = M AW, for all limit ordinal 2 = 0.
<A

In this paper, we are initially concerned with the Cantor-Bendixson
derivative of compact countable subsets of the real numbers, where a
countable set is either a finite set or a countably infinite set. Thus, we

consider the set

K ={K c R : K is compact and countable}. (1.1)
Moreover, for all K;, Ky € K, we define the relation
K; ~ K5 < there exists f : K; — Kq continuous and bijective. (1.2)

It is not hard to see that ~ is an equivalence relation on the set X and
since the elements of K are compact sets, we have that for all
Kl’ K2 e K

K, ~ K9 < there exists f : K; — K9 homeomorphism. (1.3)
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Therefore, there is a partition of the set X, and we denote by
H =N~ (1.4)
the set of all equivalence classes of K.

In 1920, Mazurkiewicz and Sierpinski [7] showed that the cardinality
of & is ;. In Section 2, we show in detail that for any countable
ordinal number o, and for any p € ®, there is a set K € K such that
K@ has exactly p elements. This last fact was first briefly mentioned by

Cantor in [3]. The results shown in Section 2 allow us to prove, in

Theorem 3.4, that the cardinality of J£ is greater than or equal to ;.
On the other hand, the cardinality of ¢ is smaller than or equal to §;
as a consequence of Theorem 3.3.

Section 3 considers Cantor-Bendixson’s characteristic, denoted by
CB. First, we show that for any element K € K with CB(K) = (a, p), we
get p =0 if and only if K = . Moreover, we use Lemma 3.6 to prove

Theorem 3.3, where the injectivity of function 51/3’, defined in (3.12), is

shown. These two last results were first mentioned in [7]; however, for
the sake of completeness, we include here their detailed proofs. Finally,
Theorem 3.5 shows that for any compact subset of the reals, there exists

a primitive-like set connected with its Cantor-Bendixson derivative.

We recall that if F is a closed subset of R, then (F(O‘) )ucOR 1S @
decreasing family of closed subsets of the real line. Furthermore, if

K € K, then (K (o) )acoRr 1s a decreasing family of elements of K.

We denote by OR, the class of all ordinal numbers. Moreover, o is
used to designate the set of all natural numbers and Q represents the
set of all countable ordinal numbers. In addition, the cardinality of a set
B is denoted by |B|.
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2. A Family of Elements in X Having a Cantor-Bendixson’s

Derivative with any Given Finite Number of Elements

First, we remark that any finite subset of R is an element of X with
empty derived set. Thus, a set of this kind satisfies the property that its
Cantor-Bendixson’s derivative is empty for all ordinal number greater
than or equal to 1. The following theorem let us find some elements
belonging to K not satisfying this last property. The main idea of the
next result was given in [3], for completeness, we present below its proof

in detail.

Theorem 2.1. For any countable ordinal number o € Q, and for all

a,b € R such that a < b, there is a set K € K such that K c (a, b] and

K@ = ).
Proof. We will use transfinite induction.

(a) First, we consider the case o = 0. For any a, b € R such that

a < b, the result follows by taking the set K = {b} € K.

(b) Now, we suppose that for a given countable ordinal number

o € Q, and for all ¢, d € R such that ¢ < d, there is a set K e K such

that K  (c, d] and K® = {d} Let a, b e R be such that a < b. We

take a strictly increasing sequence, (x,,) in (a, b] such that x,, - b

new’
as n — 4. Defining x_; := a and applying the hypothesis to the real
numbers x,, 1 < x,,, m € ®, it follows that there exists a sequence of

sets (K,,) such that for all m € o, K,,, € K, K,, < (x,_1, *p, ] and

meo

K\ = {x, }. Now, we define the set

K=W K vo. 2.1)
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The set K, given in (2.1), satisfies the following properties:
e K c (a, b], since K,,, < (x,,_1, %, ] < (a, b], forall m € o.

e K is countable, since it is the countable union of countable sets.
e K is compact. In fact, given (4;);_; an open cover of K, there is a

Jj € I suchthat b € A;. Since A; is an open set and (x,,) is a strictly

nemw

increasing sequence that converges to b, there exists N; € ® such that

K, c A; for all ne o with n> N;. On the other hand, the set
C = HnNiOKn is compact, since it is the finite union of compact sets.
Thus, C has a finite open subcover (4;), ;. Then, (4;); (j) s a finite
open subcover of K.

e For all ordinal number B with B < a,
K® = ¥ kB yp). (2.2)
mem

Last expression is obtained by using transfinite induction on B. In
fact, the case B = 0 is immediate from (2.1). Now, we suppose that for a

given ordinal number B < a, (2.2) holds. Since B +1 < a, we have that
K9 k@ <« KB for all m e o. Moreover, since x,, ¢ K\ < K¢+,

for all me w, and x, > b as m — +wo, we see that b e KB+,

Therefore,

W kB yp) c kKD, 2.3)

In order to prove the other inclusion, let x € K (B+1), Using the induction

hypothesis, we see that

KD« g® - ¥ kB yp.

meow

Therefore, either x = b or x € K,(E) for some m € . If x = b, then there

is nothing else to prove. If x # b, there exists M € ® such that
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X € KE‘I}[) c KM (@ (xM—l’ .’)CM]

We claim that x € KgE’IH). To prove the last assertion, we suppose, by
contradiction, that x ¢ Kggfl). Thus, x 1s an isolated point of Kg‘%).

However, we know that {x;} = KE‘(}) c Kggfl). Then, x # xp;. Thus,

there exists € > 0 such that (x —¢, x + &) < (xp7_;, x37) and
(-6 x+e)NKP = {x).

Moreover, since (x —¢, x +¢&) < (xp7_1, x37), we conclude that for all

me o\ {M},

(x—s,x+e)ﬂK,(,§) = Q.

Hence,

= (x—e 2 +e)N [m&Jm KOy {b}j

:(x—s,x+8)ﬂK(B),

where in the last equality we have used the assumption that (2.2) holds

for B. Even so, this last expression is a contradiction with the fact that

x e KD Then, x ¢ KE&H). Thus,

K60 o B gBDY ey (2.4)

meo

Using (2.3) and (2.4), we get

kG = ¥ gBD Y.
mem m
Finally, let y # 0 be a limit ordinal such that y < o and suppose that

k® - W k®yp), (2.5)

meo



A PRIMITIVE ASSOCIATED TO THE ... 7

for all ordinal number & such that & < y. Following a similar procedure

to the one performed above to obtain (2.3), we have that

W kW up) c kW, (2.6)

To obtain the other inclusion, let x e KW, Using the induction
hypothesis (2.5), we see that

() . ©®) _ H g0
KW, QK Q(mLeJme U{b}j.
Then, either x = b or for all ordinal number & such that & < y, there
exists m € ® such that x € K,(,?). If x = b, then there is nothing left to
prove. If x # b, there exists M € ® such that x Kg‘(}) =Ky c(xpr_1,xp7 ]

We claim now that for all ordinal number 8 such that 8§ < v, x € KEEI).

In fact, we suppose, by contradiction, that there is an ordinal number 3§
with 87 < vy and such that x ¢ KEVSIO). However, we know that there exists
mg € ® with mg # M such that x e Kr(ri?) C Ky © (Xmg-15 Xy |-
Since mo = M, we get (-1, Xy ] (X1, xpr] = S, which is a

contradiction with the fact that x € (x5, -1, %p, ] N (xpr-1, *ps ] Therefore,

ve(KY =k < Wk,
B<y €w

Then,

KV c W kWyp). 2.7)

By (2.6) and (2.7), we have that

kY = ¥ kW)

me®

Hence, (2.2) holds for all ordinal number B such that B < a.
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Applying now (2.2) to the ordinal number o, and since K,(,(lx) ={x,,},

for all m € ®, we conclude that

K@ - W gy

= U, 0

={x,, : m e o}Y{b}.
Therefore,
k@D - (K@) = @),

(c) Finally, let A # 0 be a countable limit ordinal number. We

suppose that for all ordinal number p such that p <A and for all
¢, d € R such that ¢ < d, thereis a set K e K such that K (c, d] and

Kb) = {d}. Since A is a countable limit ordinal number, there exits a

strictly increasing sequence (p,,) in Q such that p, <A, for all

new
ne o, and sup{p, :n € o} =L Let a, b e R be such that a < b. We

take a strictly increasing sequence, (x,,) in (a, b] such that x,, — b

new’
as n — +o. Defining again x_; = @ and applying the hypothesis to the

real numbers x,,_; < x,,, and the ordinal number p,,, m € o, it follows

m»
that there exists a sequence of sets (K,),_, such that for all

meao K, ek, K, < (x,_1,%,,] and K,(,‘Z"”) = {x,,}. We also define,

as in the previous case, the set

K= K, v (2.8)

It can be shown, similarly to the case (b) above, that the set K, defined in
(2.8), satisfies the following properties:

e K c (a, b].

e K is countable.
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e K is compact.

e For all ordinal number p with p < A,
k® = W k® up. 2.9)
meo

Last expression is obtained by using transfinite induction on p. In
fact, the casep = 0 is immediate from (2.8). Now, we suppose that for a
given ordinal number p < A, (2.9) holds. Since A is a limit ordinal, we

have that p +1 < A, and then there exists N € ® such that p+1 < p,,

for all m € ® with m > N. Therefore, x,, € K¥m) « K1) < gp+1),

for all m € ® with m > N, and since x,, - b as m — +ow, we see that

b e KP™, Then,

W kD yp) < KO, (2.10)

meo

In order to prove the other inclusion, let x € K (p+1), Using the induction

hypothesis, we see that

gk®D c g0 = ¥ g0y ).

Therefore, either x = b or x e K,(,{’) for some m € o. If x = b, then

there is nothing else to prove. If x = b, there exists M € ® such that
X € Kg‘e[) (e KM c (xM_l, xM]

Since KE&MH) = g, we have that p < pp; +1, thatis p < py;. We
claim that x e K%’Tl). To prove the last assertion, we suppose, by
contradiction, that x ¢ K 5{}”). Thus, x is an isolated point of K g{,’l). However,

we know that Kjy NKp, =9, then x ¢ Kjp; ;. Hence, x ¢ K%‘})ﬂ.

Thus, there exists & >0 such that (x —¢ x+¢&)c (xp7_1, Xp741)s

(x—e x+ S)HKE‘F,})H =, and
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(x —&, x+s)ﬂK§l§) = {x},

)

where in the second expression above we have used the fact that K}/ ,

is a closed subset of R. Moreover, since (x —¢&, x + &) < (Xp7_1, X3741)>

we conclude that for all m € o \ {M},
(x—s,x+s)ﬂK,(,§) =@.

Hence,

()= (— e, x+8) [mt’gmx,(g) Lﬂ{b}j

=(x—s,x+s)ﬂK(p),

where in the last equality we have used the assumption that (2.9) holds

for p. Nevertheless, this last expression is a contradiction with the fact

that x € KP*), Then, x e KE&H). Thus,
ke o W gDy, 2.11)
me®
Using (2.10) and (2.11), we get
(P+1) — | g+
K mlgm Ke Dy b,
Finally, let y # 0 be a limit ordinal such that y < A and suppose that
k® = W k®yp), 2.12)

meow

for all ordinal number & such that & < y. We have, using (2.12), that

W ko) - Y [QK@JW

o<y

c Q( Y K,(,?)) Wb}
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_ Q (mu KOy {b}j

_ ﬂ K®

o<y

- KW (2.13)

To get the other inclusion, we can follow a similar procedure to the one

performed above to obtain (2.7). Thus, we have that
kY c B k0 yp). (2.14)
me®

By (2.13) and (2.14), we obtain

kW = W kW y ).

me®

Consequently, (2.9) holds for all ordinal number p such that p <A

Furthermore, since for all m € o, p,, +1 < A, it follows that for all

me o
KR < Kign ) = (KE)) = ({x,) = 2.
Therefore,
K™ - mL’;J@ KM W) = bl
From (a), (b), and (¢), the theorem is proved. O

The next lemma will be used in the proof of Corollary 2.1 below.

Lemma 2.1. Suppose that ne o Let F, Fsy, ..., F, be closed

subsets of R. Then, for all ordinal number o € OR, we have that

noo @
[U Fk] L
k=1 k=1
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Proof. The general case, n € o, is a consequence of the result for
n = 2 and the principle of finite induction. Thus, we suppose that n = 2.

We will now use transfinite induction.
(a) If a. = 0, then there is nothing else to prove.
(b) We now suppose that for a given ordinal number o € OR,

(F, U Fy) = F U F{%). Therefore,

(F U Fy)@rD) = ((F1 U FZ)(Q)) _ (Fl(a) U Fz((x)) _ Fl((x+1) U Fz(owl),

where in the last equation we have used the fact that the derived set of a

finite union of subsets of a metric space equals the union of their derived
sets.

(c) Finally, let A # 0 be a limit ordinal number. We suppose that for

all B € OR such that B < &, (F, U Fy)®) = F®) U F{P). Then,

Fl(k) U Fz(k) _ ﬂ Fl(B) U ﬂ F2(B)
B<A B<A

- ﬂ (Fl(B) U Fz(B))
B<h

-N#E U R

B<A
= (F U Ry,
In order to prove the other inclusion, we take x € (F; U Fy )(l)_ We

suppose, for the sake of contradiction, that x ¢ Flm and x ¢ F2(7”). Thus,

there exist By, By € OR, with B; <A and By < A, such that x ¢ Fl(Bl)

and x ¢ F2(B2). If By < Bg, then FI(B2) c Fl(ﬁl). Hence, x ¢ FI(BZ) U F2(B2)
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=(F U FZ)(BZ), which contradicts the fact that x e (F; U FZ)(X) =
ﬂBd(Fl U Fz)(B). The proof of the other case, By < B;, is similar.

Therefore,
(F, UFy)® = FM yFP.

Consequently, the lemma is proved. O
The following result is a generalization of Theorem 2.1.

Corollary 2.1. Given any countable ordinal number o and given any

p € o, there exists K € K such that |K(a)| = p.

Proof. Let aa € Q. If p =0, we take K =J. If p e o\ {0}, it is

enough to apply Theorem 2.1 to a collection of p pairwise disjoint
intervals. Thus, for all k € {1, ..., p}, there exists K; € K, such that

K,ga) has only one element, and K; N K; = & for i, j € {I, ..., p} with

i # j. We now define

Hence, K € K and, using Lemma 2.1, we get
P

K@) _ H K@)

k=1 k7

Therefore, K (@) has exactly p elements. O

Remark 2.1. Even though the proofs of (2.2) and (2.9) are similar, it
1s worth mentioning that they are not identical. In fact, to prove (2.2) we
have that a € Q and for all m € o, K,(,?) = {x,,}. On the other hand, to
obtain (2.9), we consider A # 0 a countable limit ordinal and a strictly

increasing sequence (p,,) in Q, with sup{p,, : m € o} = A, such that

meo

forall m € , p,, < » and K,(,?’”) = {x,,}, where p,, depends on m.
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In addition, we point out that the process developed to obtain (2.13)
can also be used to get (2.3), (2.6), and (2.10).

3. Some Results Concerning Cantor-Bendixson’s Derivative

It is a well-known fact that, for all K e K, (K(“) JucOR 18 @
decreasing family of elements of K. The following two results were first
proved by Cantor in [5] and they imply that for all K € K, (K(“) )acOR 18

in fact a strictly decreasing family of sets in K up to a countable ordinal

number and such that all of its subsequent derivative sets are empty.

Lemma 3.1. If K € K and K # &, then K' # K.

The above lemma implies the following theorem.

Theorem 3.1. If K € K, then there exists a countable ordinal number

B such that K®) js finite.

Since Q is a well-ordered set, by the previous theorem, we see that

for all K € K, there exists the smallest countable ordinal number o
such that K@ is finite. We can now give the next definition.

Definition 3.1 (Cantor-Bendixson’s characteristic). Let K € K. We
say that (o, p) € Q x o is the Cantor-Bendixson characteristic of K if o

is the smallest countable ordinal number such that K (@) 1s finite and

|K(°‘)| = p. In this case, we write CB(K) = (a, p).

By Theorem 2.1, for all countable ordinal number o, there exists a
set K e K  having Cantor-Bendixson’s characteristic (o, 1).
Furthermore, by Corollary 2.1, we have that for all p € ® \ {0} and for
all a € Q, there exists K € K such that CB(K) = (a, p). In addition, we
obviously see that CB(J) = (0, 0). Moreover, we have the next result

concerning the empty set.
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Proposition 3.1. Let K € K be such that CB(K) = (a, p) € Qx o.
Then, p = 0 ifand only if K = &.

Proof. If K = &, then CB(K) = (0, 0), and thus the result holds.

Now, we suppose that K # . We consider three cases.

o If =0, then K = K© s finite. Since K + J, we have that
|K(O)| # 0. Hence, p # 0.

e We suppose now that o is a nonzero limit ordinal. Then, for all

BeQ such that B < a, K®) is infinite. Therefore, (K(B))[ka is a

decreasing nested family of nonempty compact subsets of R. By using the

Cantor intersection theorem, we obtain

k- (&® » 2.

B<a
Then, |K(°‘)| # 0, andso p = 0.

e Finally, we assume that o is a successor ordinal. Thus, there exists
an ordinal B € Q such that B +1 = a. Since B < a, it follows that K®

1s infinite. Then,
K@) _ gB+1) _ (K(B) )' + .

Therefore, |K(°‘)| # 0. Hence, p # 0. O
3.1. Partition of K

In this subsection, we show some general results concerning the

equivalence relation ~ defined on the set K by (1.2).

Proposition 3.2. Let K;, Ky € K be such that K; ~ Ky. Then,
K ~ K3. More precisely, if f is a homeomorphism of Ky onto Kg, then

fl Kj is also a homeomorphism of Ki onto Kj.
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Proof. Since the image of a limit point, under a homeomorphism, is

also a limit point, we see that f(Ki) = K. Hence, flKi :Ki > Kj isa

homeomorphism. Therefore, K ~ Kj. g

By using transfinite induction, we get the following result:
Corollary 3.1. Let Ky, Ko € K be such that K; ~ Kq, and let o be

any ordinal number. Then, Kl(“) ~ K;“). More precisely, if f is a

homeomorphism of Ky onto Ksq, then f|K§a) is also a homeomorphism of
K{“) onto Ké‘l).

It follows from the last corollary that if K;, Ky € K, K; ~ K9 and
CB(K;) = (o, p) € Qx o, then there exists a bijective function of K{O‘)

onto Kga). Therefore, |K§a)| = |K1(a)| = p. Hence, CB(K3) = (a, p). This

last result about the Cantor-Bendixson characteristic, which was given
by Mazurkiewicz and Sierpinski in [7], is expressed in the following

theorem:

Theorem 3.2. If K, K5 € K and K; ~ Ko, then CB(K;) = CB(Kj).

The above theorem shows that the Cantor-Bendixson characteristic is

preserved for equivalent elements of K, i.e., given K € K, we have that
CB(K;) = CB(K), for all K; € [K], where [K] denotes the equivalence

class of K. The reciprocal of Theorem 3.2, which was likewise given by
Mazurkiewicz and Sierpinski in [7], is also true, and for completeness we
give a more explicit proof of this fact in Theorem 3.3 below. In the
following, we consider any ordinal number as a topological space with the
order topology. Lemmas 3.2 to 3.6 will be used in the proof of Theorem
3.3.

Lemma 3.2. Let K € K be such that CB(K) = (1,1). Then, there

exists a homeomorphism of K onto o + 1.
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Proof. There is an x € R such that K' = {x}. The set K\ K' is
infinite and countable. Therefore, there exists a bijective function g of
K \ K' onto o. Now, we define

f: K> o+l

g(2), if z # x,
z f(z) =
o, if z = x.

We see that f is a bijective function. Furthermore, since w+1 is a
compact topological space, (o + 1)’ = {w}, f is an injective function, and
f(K') = f({x}) = {»}, we have that f is a continuous function. Moreover,
since w+1 is a Hausdorff space, it follows that f is in fact a

homeomorphism. O

Lemma 3.3. Let o be a countable ordinal number such that o > 1.

Suppose that for all ordinal number B such that 0 < B <o and for
all K e K such that CB(K)= B, p)e Qx(o\{0}), there exists a
homeomorphism ]? of K onto of -p+1. Then, for all K € K such that

CB(K) = (a, 1), there exists a homeomorphism of K onto o + 1.

Proof. Let K € K be such that CB(K) = (a, 1). Then, there exists an

x € K such that K@ = {x}. We have that x e K@ < K" Thus, xis a

limit point of K'. Hence, there exists a strictly increasing or strictly

decreasing sequence (x,,) in K' such that it converges to x. We

new

suppose that (x,,) 1s an strictly increasing sequence in K’', the other

new

case 1s similar.

We claim that for all n € ®, we can take r,, > 0 such that x,, < x -
I, <X,y and x —rn,, x +1, ¢ K. In fact, if we suppose the contrary,

then there exists [ € o such that

[x; —x, x4 —x]c{reR:x-reKorx+reKj.
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However, the set on the right-hand side of the last inclusion is countable,
which is a contradiction. Hence, the claim is proved. We remark that the

sequence (r,) converges to 0 as n goes to infinity. We now define the

neow

sets
Ko = KN ((~0, x = 1p]U [x + 19, + 0)),
K.=KN(x-r_1,x-nJU[x+r,x+r_])keo/ 0. (3.1)
We see that for all k € o, x;, € K;,. In addition, the sequence of sets
(K} ). satisfies the following properties:
e K, c K, forall k € o.
o K. € K, for all k£ € o, since they are countable closed subsets of K.

o x, € Kj, #, for all k£ € o, In fact, let € > 0. First, we consider
the case k € o\ {0}. We now take & := min{e, x;, —x +r,_1,x -1, —x3} > 0.
Since xj, € K/, there exists z e [(x; —& x; +€)\ {x;}]N K. Thus,
ze(xp —& x5 +e)\ {x;}]N K;. Hence, x;, € K|,. For the case k = 0,
by taking & := min{e, x — 1y — x¢} > 0, and proceeding in a similar way as

in the previous case, we see that x; € K.

o (K; )k < 18 @ pairwise disjoint sequence in K.

° kL"j K, W{x} = K. The fact that kt"J K. Y{x} « K follows directly
vEM® €m®

from (3.1). In order to prove the reverse inclusion, we take z ¢ K. If
z = x, there i1s nothing else to show. Now, we suppose that z # x. Since

r, > 0 as n — +o, we can choose the smallest natural number N € ®

such that ry < |x — 2|. Then, z € Kjy.

Moreover, from (3.1), we see that for all ke o, x ¢ K,(Ca) c {x}.

Therefore, for all k € o, K,ga) = . Thus, for all k € o, CB(K}.) = (B, p1)

€ Q x o implies that 0 < B; < o. We remark that for all £ € o, K;, # &
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implies that p; € o \ {0}. Using the hypothesis, we conclude that for all

k € o, there exists a homeomorphism f, of K; onto Pt pr +1. We

now define the function
f: K> 1+1
f0(2)7 lf Z € Ko,
k-1 -
2 f2)=1> o pj+1+fie),  if ze Ky, keo\{o],
7=0
T, if z = «x,

where

n
T = ZmBk .pk_ = Sup{zmﬁk .pk, i n e (D}
k=0

kew

(a) First, we remark that f is an injective function. In fact, let
u,ve K be such that f(u)=f(v). If u=x and ve K,, for some

q € o, then f(v) < Z:O(’)Bk - pp <7 = f(u), which is a contradiction.

Thus, there exists re o such that wuwe K,. We suppose, by
contradiction, that q # r. Without loss of generality, we may assume

that ¢ < r. Then,

n r—1
fR)< Y Pt pp < oft . py
=0 k=0

r-1
< Dol pp 1+ f(w) = fw),

k=0

which is not possible. Hence, ¢ = r. Thus,

g-1 i
Zmﬁk cp +1+ f(w) = f(u) = fv) = Zmﬁ’“ pp + 1+ fy(v),
=0 k=0

implies that f,(u) = f,(v). Using the fact that f, is an injective function,

it follows that u = v.
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(b) We will now show that f is onto. In fact, let y < 1. If y =1, we
have that f(x)=71=17y. If y <7, we take M :=min{fn e o : y < ZZ:O
Pk “pip}. Incase M =0,y < wPo - po- Since, f; is onto, there exists

ze Ky c K such that f(z)=fy(z)=y. We now assume that
M € o\ {0}. Then,

M-1 M
Zmﬁkopk+1£y§2mﬁk-pk.
k=0 k=0

Thus, there exists an ordinal number p such that

M-1 M-1
Zcoﬁk~pk+1+p:ys Zmﬁkopk+a)BM~pM.
k=0 k=0

Then, p < oM - py- Since fyr is onto, there exists z € Kjy < K such
M-1
that fy;(z) = p. So, f(z) = Zk:O oPF . pp +1+ far(2) = 7.

(c) Moreover, for all k € o, f] K, equals an ordinal number, i.e., a
constant function, plus a continuous function. Thus, for all £ € o, f| K, is
a continuous function. In addition, since (K}, ),C <o, 18 a pairwise disjoint
sequence of open subsets in K, it follows that fis a continuous function at

any element of LﬂkemK i Furthermore, f is also continuous at the point

x € K. If fact, let p be an ordinal number such that p < 7. There exists

m € o such that p < Z;iomﬁj - pj- We claim that

f((x =71y, x+1,)NK) < (n, T+1). (3.2)

Let ye(x—r,,x+1,)NK. If y=x, then f(y)=f(x)=1e(u, 7+1).
We now suppose that y # x. Then, there is i € ® such that y € K;.

Since (r,) is a strictly decreasing sequence of positive numbers, we

nemw

conclude that ¢ > m. Then,
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-1 B, m 5,
f3) =D 07 pj+1+£()2 Y o pj>n (3.3)
Jj=0 j=0
Moreover,

-1 i-1
f(y) = Zwﬁj pj+1+fi(y) < Zwﬁj pj+1+oP - p;
Jj=0 j=0

1
ZZU)Bj-ijT<T+1. (3.4)
=0

From Equations (3.3) and (3.4), we see that f(y) e (u, T +1). Thus,

Equation (3.2) follows. Hence, fis continuous at the point x.

By (a) and (b), f is a bijective function. In addition, by (c¢), f is a

continuous function of K onto T + 1.

We will now prove that T = ®*. In order to get this, let a := sup{B;, :

k € o} € OR. We see that a < a.

(i) First, we consider the case a < a. Then, & +1 < a. Thus, for all
k € o, K](C&H) = . Using transfinite induction, and proceeding as in the

proof of (2.2), we get

IO )

Then, a +1 = a. Since for all k£ € o, Pk -pi < o® - pi, we see that

T=Z®Bk - Dy, Sma(Zpk]:ma-m:maH = 0% (3.5)

keo keo

On the other hand, we claim that

l{n e w:B, =a}| =Ny. (3.6)

In order to prove (3.6), we first suppose, by contradiction, that for all

nea® B, <d Thus, for all new, B, +1<d, and we get K,(la) c
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Kgﬁ’ﬁl) = @. Moreover, we see that K(%) = LﬂkemKéa) W {x} = {x}. Then,
o = o, which is a contradiction. Hence, there exists at least one n € ®
such that B, = a. We now suppose, again by contradiction, that the set
{(new:B, =0} =D is finite. Let N :=max{ne o:B, =d}ec on. We

have that for all ¥ € ® such that k¥ > N, B;, < a. Then,
¥ Y
(@ _ 4 g(@) - g@y
K keka W {x} =0 K; W {x}.

It follows that, K@ is a finite set. Hence, k() - gla+1) _ &, which is
a contradiction with the fact that K(®) = {x}. Therefore, (3.6) is proved.

We now define, for all n € o,
m, =|{kew:k<nandp; =a}| o

Then, for all n € o, we have that

n
ZmBk “pp = 0% -m,.
k=0

For this reason,

T=Z®Bk'pk > o - sup{m, : n e o}

kew
=% o= = 0% (3.7

Using (3.5) and (3.7), we conclude that T = 0%.

(i) We now consider the case a = a. We claim that for all & € o,

B <. In fact, if there exists [ € o such that B; = @, then

Kl(ﬁl)U{x} - L*j Ki(ﬁl)L*J{x} - gB1) _ gla) _ {x},

contradicting the fact that |Kl(ﬁl)| = p; > 0. We now remark that o is a

limit ordinal. In order to prove the last assertion, we suppose, for the
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sake of contradiction, that o is a successor ordinal. Then, there exists an

ordinal number A such that o = A + 1. Thus, forall £ € , B, <A < a = Q,
which is a contradiction with the definition of a. On the other hand,

since for all k¥ € o, Pt < ot - pi. < 1, it follows that
o = o = sup{o)ﬁk ckeol<T. (3.8)
We now define, for all n € o,

By, = max{B; : k=0,1,..., n},
Py, = max{p; : k=0,1, ..., n}.

Then, for all n € o, we see that

By, +1 o

n
Zwﬁk-kamﬁkn~pkn-n<m < 0%,
k=0

where in the last inequality we have used the fact that §; <f; +1<oa.

In consequence,

T = ZmBk “pp < 0. (3.9)

kew
Equations (3.8) and (3.9) imply that T = »®.

Therefore, f is a bijective and continuous function of K onto
T+1=0"+1. In addition, since ©* +1 is a Hausdorff space, we

conclude that fis a homeomorphism of K onto o® + 1. O

Lemma 3.4. Suppose that K and F are closed subsets of R such that

KNF =KNF, whereF is the set of all interior points of F. Then, for
all o € OR, we have that

(KNF) = K9nF. (3.10)
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Proof. We proceed by transfinite induction.
e The case o = 0 is immediate.

e We now suppose that the result is true for o € OR. Then,

(K N F)(a+1) :((K N F)(O“))' _ (K(a) N F)' - (K(a) )' NF c K((x+1) N F,

where in the last expression we have used the induction hypothesis and

the fact that F is closed. In order to prove the reverse inclusion, let

X € K(Ml) N F. Since K is closed, x e K(VF = KN F. Thus, there
exists r >0 such that (x —r,x+r)c F. Let ¢ >0. We now take

€ = minf{e, r} > 0. Then,
G ((x-5x+DNEDNEKD = (x-F, 2+ )\ HNKYNF
c ((x —e, x+8)\{x})ﬂ(KﬂF)(°‘).

Hence, x € (KN F)((Hl). Therefore, (K N F)((”l) = KN F,

e Finally, let A # 0 be a limit ordinal number. We suppose that for
all B € OR such that p < A, (KN F)P) = K®) N F. Then,
®&nFY =&nFP=N&PnF) =& nr=c"nr.
B<i B<h B<h
This concludes the proof. O

Lemma 3.5. Let o be a countable ordinal number such that o > 0.

Let p € o\ {0}. Suppose that for all K € K such that CB(K) = (a, 1),

there exists a homeomorphism of K onto o* +1. Then, for all K € K

such that CB(K) = (a, p), there exists a homeomorphism of K onto

o* . p+1.
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Proof. Let K € K be such that CB(K) = (o, p) € Qx o. We write
K@ {1, %9, ..., x, |, where x; < xj, forall i, j eI := {1, ..., p} with
i < j. We see that for all £k € {1, ..., p —1}, there exists z; € (x;, x;,1)

such that z;, ¢ K. We now consider the sets
Ky = KN (-, ],
K. =KN[zi1, 21, k€2 ..., p-1},
K, = KN[zp_1, + ). (3.11)

Proceeding as in the proof of Lemma 3.3, it is possible to show that the

finite family (K},),_; satisfies the following properties:
o K. c K, forall k € L
e K, e K, forall k € I.
o x, € K| O, forall k e I

® (K} ), is a pairwise disjoint finite sequence in K.

[ ] Lﬂ Kk :K.
kel

By using Lemma 3.4, we have that for all k e I, K,ga) = {x;.}.
Therefore, for all k € I, CB(K},) = (a, 1). Thus, for all k € I, there exists

a homeomorphism f, of K; onto ®* +1. We now define the function f

given by
f: KB 1+1
fl(z)7 if g € K17

k-1
2 fle) = Zco“ +1+ fi(2), if z € K}, for some k e I \ {1},
i
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where

Proceeding in a similar fashion as in the items (a), (b), and (c) in the proof

of Lemma 3.3, we obtain that fis a homeomorphism of K onto o* - p + 1.
O

Lemma 3.6. Let o be a countable ordinal number such that o > 0.
Let p € o\ {0}. Then, for all K € K such that CB(K) = (a, p), there

exists a homeomorphism of K onto o* - p + 1.

Proof. We will use strong transfinite induction. By Lemmas 3.2 and
3.5, the result holds for oo = 1. We now consider o € Q such that a > 1,

and we suppose that the result is true for all ordinal number  such that
0 < B < a. Lemmas 3.3 and 3.5 imply the result for a. Hence, the lemma
is proved. 0

Next result contains the reciprocal of Theorem 3.2.

Theorem 3.3. If K|, K9 € K and CB(K; ) = CB(Ky ), then K; ~ K.

Proof. If CB(K;) = CB(Ks) = (0, p) € Q x o, we get |K;| = |Ks| = p.
Then, K; ~ K.

We now suppose that CB(K;)= CB(Ks) = (a, p), with a > 0. By
Proposition 8.1, pe o\ {0}. By Lemma 3.6, there exist two
homeomorphisms, g of K; onto ®* - p+1 and h of Ky onto o* - p +1.
Therefore, f =h o g: K; — Ky is a homeomorphism of K; onto K.

Hence, K; ~ K,. O

Theorems 3.2 and 3.3 fully characterize the partition of K by the

Cantor-Bendixson characteristic.
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3.2. Cardinality of the set ¢
Combining the previous results we obtain the cardinality of ¢
Theorem 3.4. The set ', given by (1. 4), has cardinality ;.
Proof. We define the function
CB: H > (Qx(0\{0}))U(0,0)
[K]~ CB([K])=CB(K) = (a, p). (3.12)

By Theorem 3.2 and Proposition 3.1, we see that CB is well-defined.
Moreover, Corollary 2.1 implies that CB is a surjective function.

Furthermore, by Theorem 3.3, CB is an injective function. Then,
| ] = [(Qx(@\{0})U(0,0)] = Qx| =|Q = N. O
Last theorem shows that
Ng < Np = |#] <20 =
where ¢ is the cardinality of R.

3.3. A “primitive” related to the Cantor-Bendixson derivative of

compact subsets of the real line

We end this paper with a last theorem that we can view as a
generalization of Theorem 2.1 and Corollary 2.1 given in Section 2. The
next result shows that for any compact subset of the reals, there is a

primitive-like set associated to its Cantor-Bendixson derivative.

Theorem 3.5. Suppose that o € Q. Let F be a compact subset of R.

Then, there exists a compact set F < R such that .7-"(0‘) = F.
Proof. If o = 0, we define F = F and the result holds.

From now on, we suppose that o > 0. There are two cases. First, if F

is perfect, i.e., F' = F' we can take F = F, and the result follows.
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We now assume that F # F'. Since F \ I’ 1is the set of all isolated
points of F, we have that F \ F' # & 1is countable. Hence, F \ F' =

{x, :nel}, where =1 c o, and x, # x,,, for all n, m e I with

n # m. Furthermore, for all n e I, there exists r, € (0, ﬁ) such
that (x, - r,, x, +1, )N F = {x,,}. By Theorem 2.1, we see that for all
nel, there exits K, € K such that K, < (x,-r,, x,] and
K\ = {x,}. Since ((x, -7, x,]),.; is a pairwise disjoint sequence of
intervals, we see that (K,,),_; is a pairwise disjoint sequence in K. We

now define the set 7 < R given by
F=WK,UF (3.13)
nel

Claim 1. F is a compact subset of R.

In fact, let (2;),., be a sequence in F such that z;, — z € R when
k — +o. There are three cases.

(1) If {(kew:z, € F} is infinite, there exists a subsequence
(z¢( ;f))]fem in F, where ¢ : ® > o is a strictly increasing function. Since
Fis closed, we conclude that z € F < F.

(i1) We now suppose that there exists m eI such that

{k € ®: 2z, € K,,} is infinite. Similarly as in the previous case, we obtain

that z € K,,, ¢ F.

(iii) Finally, we assume that for all ne I, {kew:z, € K,} is a
finite set and {k € w:z, € F} is also finite. Thus, there exists a

subsequence (Zv(k))kem’ where p: o ® is a strictly increasing

function, and there is also a strictly increasing function o : ® — I such
that for all & € ®

2y(k) € Ko@)y © (Xo(k) = Tok)s Xo(k) )- (3.14)
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In order to prove the last assertion, we see that there exists ng € I such
that {k € o : 2; € K,,) } # &. Then, there is ky € ® with 2z € K, . We
thus define y(0) := kg and o(0) := ny. We now get n; € I with n; > ng
and such that {k € 0: 2, € K, ,

with % > kg and such that z; < K, . We define y(1):=#k and

k> ky}# @. So, there exists k € ®

o(1) := n;. By continuing this process, functions ¥ and o are recursively

obtained. From (3.14), we have that for all k € o, |[xg() — 2y()| < To(r) <

1 .
FOFSR As (2y(k) reo cOnverges to z, it follows that (xg(j))ie, also

converges to z. Since, the elements of the last sequence belong to F, and F

1s closed, we conclude that z € F < F.

From (i), (i1), and (i11), F 1is a closed subset of R. Moreover, since F'is
bounded, there exist a, b € R, with a < b, such that F c [a, b]. Then,

F c [a -1, b], i.e., F is bounded. Hence, F is a compact subset of R.
Claim 2. 7 = F.

Actually, we will show the following more general result: For all
countable ordinal number B € Q such that B < o

FB) _ ¢ KI(LB) UF. (3.15)

nel

In order to prove (3.15), we proceed by transfinite induction as in
Theorem 2.1.

(a) If B = 0, then the result holds immediately.

(b) We now suppose that (3.15) is true for a given B € Q such that

B < a. We note that for all n € I, K,(LBH) c FB+D Then,

Y kG o )
nel

Furthermore, by the induction hypothesis, F < F ®), Then, F' ¢ F (B+1),

Moreover,
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FNF = W= g o ¥ gBD o #B+D)
n nel " nel = " )

nel

Hence,
L’dj KPDyF c 7O+, (3.16)
he

In order to show the reverse inclusion, we take x € F (B+1), Using the

induction hypothesis, we see that
x e FOB _ (FB)) _ (nw By F) _ (nw K(s)) UF
S el "
Using now Claim 1, we have that F 1is closed. Then,

xe 7B - £70) 2 L".'JIKgﬁ) UPF.

If x e F, there is nothing left to show. On the other hand, if x ¢ F,
there exists m e I such that «x e K,(S) < (xp, = Tys ] We now
assume, by contradiction, that x ¢ K,(,E’H) . Then, x is an 1solated point of

KB,

Since x # x,, € F, there is 0 < ¢ < min{x — x,,, + 1,,, x,,, — ¥} such

that
(x — &, x+s)ﬂK,(E) = {x}.

Moreover, as (x —¢, x +¢) < (x,, — Iy, X,,,), we conclude that for all

nel with n # m,
(x — &, x+e)ﬂK,(lB) = Q.
Then,

(x—¢ x+e)N HIKgB) = {x}.
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Therefore, x is an isolated point of L’fJnngﬁ). Since x ¢ F, and F is

closed, we see that x ¢ F'. Hence, xe(HndKﬁP)), which is

contradictory. In consequence,
X € K,(,E’H) c nL?I K,(PH).
Thus, summarizing, we can conclude that
FB+1) nLZJI Kﬁlﬁﬂ) UF. (3.17)

From (3.16) and (3.17), we get

FO - GOy F.
nel

(c) Finally, let y # 0 be a limit ordinal such that y < a and we

assume that for all ordinal number 8 such that 6 < vy,
7O - k®yF. (3.18)
nel

Using (3.18), we obtain

+ 5 (v) - (8)
nLeJIKn UF = nLeJI[Q{Kn ]UF

<Y &)ur

d<y

-N(Y &®
Q("EIK UF)

- F©

<y

= 7, (3.19)
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In order to show the other inclusion, we take x e F (), Using the

induction hypothesis (3.18), we see that

FO = (7O = ﬂ(nlﬂl KO UF)

d<y o<y
Then, either x € F or for all ordinal number & such that & < y, there
exists n € I such that x € KSS). If x € F, then there is nothing else to

be done. If x ¢ F, there is N € I such that x Kg\?) = K. We now

assume, to get a contradiction, that there is an ordinal number 5, with
89 <y and such that x ¢ KSO). Since there is [ € I with [ # N such

that x € KI(SO) c K;, we obtain a contradiction with the fact that
K, NKy =9. Hence, for all ordinal number & such that

d<vy,xe€ Kg\?). In consequence,

xe (&Y - &Y < Yk,
d<y <

Thus,

) < t"JI Kr(LY) UF. (3.20)

From (3.19) and (3.20), we have that

FO - W kW yF.
nel "

By (a), (b) and (c), we obtain (3.15) for all countable ordinal number

such that B < a. Finally, using (3.15) with a, we get
FO W kD yr- W juF=F,
nel nel

which finishes the proof. U
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