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Abstract 

We consider the class of compact countable subsets of the real numbers .R  By 
using an appropriate partition, up to homeomorphism, of this class we give a 
detailed proof of a result shown by Mazurkiewicz and Sierpinski related to the 
cardinality of this partition. Furthermore, for any compact subset of ,R  we 
show the existence of a “primitive” related to its Cantor-Bendixson derivative. 
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1. Introduction 

The earliest ideas of limit point and derived set in the space of the 
real numbers were both introduced and investigated by Georg Cantor 
since 1872 (see also [1, 2, 3, 4, 6]) to analyze the convergence set of a 
trigonometric series. These two concepts have been generalized to the 
case of any arbitrary topological space. Thus, let X be a topological space 
and let A be a subset of X, we write A′  to denote the derived set of A, 
that is, the set of all limit points of A. The next definition extends the 
process of taking the derivative of a set for any ordinal number. 

Definition 1.1 (Cantor-Bendixson’s derivative). Let A be a subset of 
a topological space. For a given ordinal number ,α  we define, using 

transfinite recursion, the th-α  derivative of A, written ( ),αA  as follows: 

( ) ,0 AA =•  

( ) ( ( ) ) ,1 ′=• β+β AA  for all ordinal ,β  

( ) ( ),γ

λ<γ

λ =• AA ∩  for all limit ordinal .0≠λ  

In this paper, we are initially concerned with the Cantor-Bendixson 
derivative of compact countable subsets of the real numbers, where a 
countable set is either a finite set or a countably infinite set. Thus, we 
consider the set 

{ }.countableandcompactis: KK R⊂=K   (1.1) 

Moreover, for all ,, 21 K∈KK  we define the relation 

.bijectiveandcontinuous:existsthere~ 2121 KKfKK 6⇔   (1.2) 

It is not hard to see that ~ is an equivalence relation on the set K  and 
since the elements of K  are compact sets, we have that for all 

K∈21, KK  

ism.homeomorph:existsthere~ 2121 KKfKK 6⇔   (1.3) 
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Therefore, there is a partition of the set ,K  and we denote by 

~K=K   (1.4) 

the set of all equivalence classes of .K  

In 1920, Mazurkiewicz and Sierpinski [7] showed that the cardinality 
of K  is .1  In Section 2, we show in detail that for any countable 

ordinal number ,α  and for any ,ω∈p  there is a set K∈K  such that 
( )αK  has exactly p elements. This last fact was first briefly mentioned by 

Cantor in [3]. The results shown in Section 2 allow us to prove, in 
Theorem 3.4, that the cardinality of K  is greater than or equal to .1  

On the other hand, the cardinality of K  is smaller than or equal to 1  

as a consequence of Theorem 3.3. 

Section 3 considers Cantor-Bendixson’s characteristic, denoted by 
.CB  First, we show that for any element K∈K  with ( ) ( ),, pK α=CB  we 

get 0=p  if and only if .∅=K  Moreover, we use Lemma 3.6 to prove 

Theorem 3.3, where the injectivity of function j,CB  defined in (3.12), is 

shown. These two last results were first mentioned in [7]; however, for 
the sake of completeness, we include here their detailed proofs. Finally, 
Theorem 3.5 shows that for any compact subset of the reals, there exists 
a primitive-like set connected with its Cantor-Bendixson derivative. 

We recall that if F is a closed subset of ,R  then ( ( ) ) OR∈α
αF  is a 

decreasing family of closed subsets of the real line. Furthermore, if 

,K∈K  then ( ( ) ) OR∈α
αK  is a decreasing family of elements of .K  

We denote by OR, the class of all ordinal numbers. Moreover, ω  is 
used to designate the set of all natural numbers and Ω  represents the 
set of all countable ordinal numbers. In addition, the cardinality of a set 
B is denoted by .B  
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2. A Family of Elements in K  Having a Cantor-Bendixson’s 
Derivative with any Given Finite Number of Elements 

First, we remark that any finite subset of R  is an element of K  with 
empty derived set. Thus, a set of this kind satisfies the property that its 
Cantor-Bendixson’s derivative is empty for all ordinal number greater 
than or equal to 1. The following theorem let us find some elements 
belonging to K  not satisfying this last property. The main idea of the 
next result was given in [3], for completeness, we present below its proof 
in detail. 

Theorem 2.1. For any countable ordinal number ,Ω∈α  and for all 

R∈ba,  such that ,ba <  there is a set K∈K  such that ( ]baK ,⊂  and 

( ) { }.bK =α  

Proof. We will use transfinite induction. 

(a) First, we consider the case .0=α  For any R∈ba,  such that 

,ba <  the result follows by taking the set { } .K∈= bK  

(b) Now, we suppose that for a given countable ordinal number 

,Ω∈α  and for all R∈dc,  such that ,dc <  there is a set K∈K~  such 

that ( ]dcK ,~ ⊂  and ( ) { }dK =α~  Let R∈ba,  be such that .ba <  We 

take a strictly increasing sequence, ( ) ,ω∈nnx  in ( ]ba,  such that bxn →  

as .+∞→n  Defining ax =− :1  and applying the hypothesis to the real 

numbers ,,1 ω∈<− mxx mm  it follows that there exists a sequence of 

sets ( ) ω∈mmK  such that for all ( ]mmmm xxKKm ,,, 1−⊂∈ω∈ K  and 

( ) { }.mm xK =α  Now, we define the set 

{ }.: bKK mm
´µ

ω∈
=   (2.1) 
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The set K, given in (2.1), satisfies the following properties: 

● ( ],, baK ⊂  since ( ] ( ],,,1 baxxK mmm ⊂⊂ −  for all .ω∈m  

● K is countable, since it is the countable union of countable sets. 

● K is compact. In fact, given ( ) IiiA ∈  an open cover of K, there is a 

Ij ∈  such that .jAb ∈  Since jA  is an open set and ( ) ω∈nnx  is a strictly 

increasing sequence that converges to b, there exists ω∈1N  such that 

jn AK ⊂  for all ω∈n  with .1Nn >  On the other hand, the set  

n
N
n KC 1

0: == µ  is compact, since it is the finite union of compact sets. 

Thus, C has a finite open subcover ( ) .JiiA ∈  Then, ( ) { }jJiiA ∪∈  is a finite 

open subcover of K. 

● For all ordinal number β  with ,α≤β  

( ) ( ) { }.bKK mm
´µ β

ω∈
β =  (2.2) 

Last expression is obtained by using transfinite induction on .β  In 

fact, the case 0=β  is immediate from (2.1). Now, we suppose that for a 

given ordinal number ,α<β  (2.2) holds. Since ,1 α≤+β  we have that 
( ) ( ) ( ),1+βαα ⊂⊂ KKKm  for all .ω∈m  Moreover, since ( ) ( ),1+βα ⊂∈ KKx mm  

for all ,ω∈m  and bxm →  as ,+∞→m  we see that ( ).1+β∈ Kb  

Therefore, 

( ) { } ( ).11 +β+β
ω∈

⊂ KbKmm
´µ   (2.3) 

In order to prove the other inclusion, let ( ).1+β∈ Kx  Using the induction 
hypothesis, we see that 

( ) ( ) ( ) { }.1 bKKK mm
´µ β

ω∈
β+β =⊂  

Therefore, either bx =  or ( )β∈ mKx  for some .ω∈m  If ,bx =  then there 

is nothing else to prove. If ,bx ≠  there exists ω∈M  such that 
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( ) ( ].,1 MMMM xxKKx −
β ⊂⊂∈  

We claim that ( ).1+β∈ MKx  To prove the last assertion, we suppose, by 

contradiction, that ( ).1+β∈/ MKx  Thus, x is an isolated point of ( ).β
MK  

However, we know that { } ( ) ( ).1+βα ⊂= MMM KKx  Then, .Mxx ≠  Thus, 

there exists 0>  such that ( ) ( )MM xxxx ,, 1−⊂ε+ε−  and 

( ) ( ) { }., xKxx M =ε+ε− β∩  

Moreover, since ( ) ( ),,, 1 MM xxxx −⊂ε+ε−  we conclude that for all 

{ },\ Mm ω∈  

( ) ( ) ., ∅=ε+ε− β
mKxx ∩  

Hence, 

{ } ( ) ( ) { }




ε+ε−= β

ω∈
bKxxx mm

´µ∩,  

( ) ( ),, βε+ε−= Kxx ∩  

where in the last equality we have used the assumption that (2.2) holds 
for .β  Even so, this last expression is a contradiction with the fact that 

( ).1+β∈ Kx  Then, ( ).1+β∈ MKx  Thus, 

( ) ( ) { }.11 bKK mm
´µ +β

ω∈
+β ⊂   (2.4) 

Using (2.3) and (2.4), we get 

( ) ( ) { }.11 bKK mm
´µ +β

ω∈
+β =  

Finally, let 0≠γ  be a limit ordinal such that α≤γ  and suppose that 

( ) ( ) { },bKK mm
´µ δ

ω∈
δ =   (2.5) 
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for all ordinal number δ  such that .γ<δ  Following a similar procedure 

to the one performed above to obtain (2.3), we have that 

( ) { } ( ).γγ
ω∈

⊂ KbKmm
´µ   (2.6) 

To obtain the other inclusion, let ( ).γ∈ Kx  Using the induction 
hypothesis (2.5), we see that 

( ) ( ) ( ) { } .: 




== δ

ω∈
γ<δ

δ

γ<δ

γ bKKK mm
´µ∩∩  

Then, either bx =  or for all ordinal number δ  such that ,γ<δ  there 

exists ω∈m  such that ( ).δ∈ mKx  If ,bx =  then there is nothing left to 

prove. If ,bx ≠  there exists ω∈M  such that ( ) ( ].,1
0

MMMM xxKKx −⊂=∈  

We claim now that for all ordinal number δ  such that ( )., δ∈γ<δ MKx   

In fact, we suppose, by contradiction, that there is an ordinal number 0δ  

with γ<δ0  and such that ( ).0δ∈/ MKx  However, we know that there exists 

ω∈0m  with Mm ≠0  such that ( ) ⊂⊂∈ δ
0

0
0 mm KKx ( ]., 00 1 mm xx −  

Since ,0 Mm ≠  we get ( ] ( ] ,,, 11 00 ∅=−− MMmm xxxx ∩  which is a 

contradiction with the fact that ( ] ( ].,, 11 00 MMmm xxxxx −−∈ ∩  Therefore, 

( ) ( ) ( ).: γ
ω∈

γδ

γ<δ

⊂=∈ mmMM KKKx µ∩  

Then, 

( ) ( ) { }.bKK mm
´µ γ

ω∈
γ ⊂  (2.7) 

By (2.6) and (2.7), we have that 

( ) ( ) { }.bKK mm
´µ γ

ω∈
γ =  

Hence, (2.2) holds for all ordinal number β  such that .α≤β  
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Applying now (2.2) to the ordinal number ,α  and since ( ) { },mm xK =α  

for all ,ω∈m  we conclude that 

( ) ( ) { }bKK mm
´µ α

ω∈
α =  

{ } { }bxmm
´µ

ω∈
=  

{ } { }.: bmxm ´ω∈=  

Therefore, 

( ) ( ( ) ) { }.1 bKK =′= α+α  

(c) Finally, let 0≠λ  be a countable limit ordinal number. We 
suppose that for all ordinal number ρ  such that λ<ρ  and for all 

R∈dc,  such that ,dc <  there is a set K∈K~  such that ( ]dcK ,~ ⊂  and 
( ) { }.~ dK =ρ  Since λ  is a countable limit ordinal number, there exits a 

strictly increasing sequence ( ) ω∈ρ nn  in Ω  such that ,λ<ρn  for all 

,ω∈n  and { } .:sup λ=ω∈ρ nn  Let R∈ba,  be such that .ba <  We 

take a strictly increasing sequence, ( ) ,ω∈nnx  in ( ]ba,  such that bxn →  

as .+∞→n  Defining again ax =−1  and applying the hypothesis to the 

real numbers ,1 mm xx <−  and the ordinal number ,, ω∈ρ mm  it follows 

that there exists a sequence of sets ( ) ω∈mmK  such that for all 

,, K∈ω∈ mKm  ( ]mmm xxK ,1−⊂  and ( ) { }.mm xK m =ρ  We also define, 

as in the previous case, the set 

{ }.: bKK mm
´µ

ω∈
=   (2.8) 

It can be shown, similarly to the case (b) above, that the set K, defined in 
(2.8), satisfies the following properties: 

● ( ]., baK ⊂  

● K is countable. 
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● K is compact. 

● For all ordinal number ρ  with ,λ≤ρ  

( ) ( ) { }.bKK mm
´µ ρ

ω∈
ρ =   (2.9) 

Last expression is obtained by using transfinite induction on .ρ  In 

fact, the case 0=ρ  is immediate from (2.8). Now, we suppose that for a 

given ordinal number ,λ<ρ  (2.9) holds. Since λ  is a limit ordinal, we 

have that ,1 λ<+ρ  and then there exists ω∈N  such that mρ<+ρ 1  

for all ω∈m  with .Nm >  Therefore, ( ) ( ) ( ),11 +ρ+ρρ ⊂⊂∈ KKKx mmm m  

for all ω∈m  with ,Nm >  and since bxm →  as ,+∞→m  we see that  
( ).1+ρ∈ Kb  Then, 

( ) { } ( ).11 +ρ+ρ
ω∈

⊂ KbKmm
´µ  (2.10) 

In order to prove the other inclusion, let ( ).1+ρ∈ Kx  Using the induction 
hypothesis, we see that 

( ) ( ) ( ) { }.1 bKKK mm
´µ ρ

ω∈
ρ+ρ =⊂  

Therefore, either bx =  or ( )p
mKx ∈  for some .ω∈m  If ,bx =  then 

there is nothing else to prove. If ,bx ≠  there exists ω∈M  such that 

( ) ( ].,1 MMMM xxKKx −
ρ ⊂⊂∈  

Since ( ) ,1 ∅=+ρM
MK  we have that ,1+ρ<ρ M  that is .Mρ≤ρ  We 

claim that ( ).1+ρ∈ MKx  To prove the last assertion, we suppose, by 

contradiction, that ( ).1+ρ∈/ MKx  Thus, x is an isolated point of ( ).ρ
MK  However, 

we know that ,1 ∅=+MM KK ∩  then .1+∈/ MKx  Hence, ( ) .1
ρ
+∈/ MKx      

Thus, there exists 0>ε  such that ( ) ( ),,, 11 +−⊂ε+ε− MM xxxx  

( ) ( ) ,, 1 ∅=ε+ε− ρ
+MKxx ∩  and 
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( ) ( ) { },, xKxx M =ε+ε− ρ∩  

where in the second expression above we have used the fact that ( )ρ
+1MK  

is a closed subset of .R  Moreover, since ( ) ( ),,, 11 +−⊂ε+ε− MM xxxx  

we conclude that for all { },\ Mm ω∈  

( ) ( ) ., ∅=ε+ε− ρ
mKxx ∩  

Hence, 

{ } ( ) ( ) { }




ε+ε−= ρ

ω∈
bKxxx mm

´µ∩,  

( ) ( ),, ρε+ε−= Kxx ∩  

where in the last equality we have used the assumption that (2.9) holds 
for .ρ  Nevertheless, this last expression is a contradiction with the fact 

that ( ).1+ρ∈ Kx  Then, ( ).1+ρ∈ MKx  Thus, 

( ) ( ) { }.11 bKK mm
´µ +ρ

ω∈
+ρ ⊂  (2.11) 

Using (2.10) and (2.11), we get 

( ) ( ) { }.11 bKK mm
´µ +ρ

ω∈
+ρ =  

Finally, let 0≠γ  be a limit ordinal such that λ≤γ  and suppose that 

( ) ( ) { },bKK mm
´µ δ

ω∈
δ =  (2.12) 

for all ordinal number δ  such that .γ<δ  We have, using (2.12), that 

( ) { } ( ) { }bKbK mmmm
´µ´µ 













= δ

γ<δ
ω∈

γ
ω∈ ∩  

( ) { }bKmm
´µ 






⊂ δ

ω∈
γ<δ
∩  
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( ) { }




= δ

ω∈
γ<δ

bKmm
´µ∩  

( )δ

γ<δ

= K∩  

( ).γ= K  (2.13) 

To get the other inclusion, we can follow a similar procedure to the one 
performed above to obtain (2.7). Thus, we have that 

( ) ( ) { }.bKK mm
´µ γ

ω∈
γ ⊂  (2.14) 

By (2.13) and (2.14), we obtain 

( ) ( ) { }.bKK mm
´µ γ

ω∈
γ =  

Consequently, (2.9) holds for all ordinal number ρ  such that .λ≤ρ  

Furthermore, since for all ,1, λ<+ρω∈ mm  it follows that for all 
ω∈m  

( ) ( ) ( ( ) ) { }( ) .1 ∅=′=′=⊂ ρ+ρλ
mmmm xKKK mm  

Therefore, 

( ) ( ) { } { }.bbKK mm
== λ

ω∈
λ ´µ  

From (a), (b), and (c), the theorem is proved.   

The next lemma will be used in the proof of Corollary 2.1 below. 

Lemma 2.1. Suppose that .ω∈n  Let nFFF ,,, 21 …  be closed 

subsets of .R  Then, for all ordinal number ,OR∈α  we have that 

( )
( ).

11

α

=

α

=

=












k

k
k

k

FF
nn

∪∪  
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Proof. The general case, ,ω∈n  is a consequence of the result for 

2=n  and the principle of finite induction. Thus, we suppose that .2=n  
We will now use transfinite induction. 

(a) If ,0=α  then there is nothing else to prove. 

(b) We now suppose that for a given ordinal number ,OR∈α  

( )( ) ( ) ( ).2121
ααα = FFFF ∪∪  Therefore, 

( )( ) ( )( )( ) ( ) ( )( ) ( ) ( ),1
2

1
12121

1
21

+α+αααα+α =
′

=
′

= FFFFFFFF ∪∪∪∪  

where in the last equation we have used the fact that the derived set of a 
finite union of subsets of a metric space equals the union of their derived 
sets. 

(c) Finally, let 0≠λ  be a limit ordinal number. We suppose that for 

all OR∈β  such that ( )( ) ( ) ( ).2121
βββ =λ<β FFFF ∪∪,  Then, 

( ) ( ) ( ) ( )β

λ<β

β

λ<β

λλ = 2121 FFFF ∩∩ ∪∪  

( ( ) ( ) )ββ

λ<β

⊂ 21 FF ∪∩  

( )( )β

λ<β

= 21 FF ∪∩  

( )( ).21
λ= FF ∪  

In order to prove the other inclusion, we take ( )( ).21
λ∈ FFx ∪  We 

suppose, for the sake of contradiction, that ( )λ∈/ 1Fx  and ( ).2
λ∈/ Fx  Thus, 

there exist ,, 21 OR∈ββ  with λ<β1  and ,2 λ<β  such that ( )1
1
β∈/ Fx  

and ( ).2
2
β∈/ Fx  If ,21 β≤β  then ( ) ( ).12

11
ββ ⊂ FF  Hence, ( ) ( )22

21
ββ∈/ FFx ∪  
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( )( ),221
β= FF ∪  which contradicts the fact that ( )( ) =∈ λ

21 FFx ∪  

( )( ).21
β

λ<β
FF ∪∩  The proof of the other case, ,12 β<β  is similar. 

Therefore, 

( )( ) ( ) ( ).2121
λλλ = FFFF ∪∪  

Consequently, the lemma is proved.   

The following result is a generalization of Theorem 2.1. 

Corollary 2.1. Given any countable ordinal number α  and given any 

,ω∈p  there exists K∈K  such that ( ) .pK =α  

Proof. Let .Ω∈α  If ,0=p  we take .∅=K  If { },0\ω∈p  it is 

enough to apply Theorem 2.1 to a collection of p pairwise disjoint 
intervals. Thus, for all { },,,1 p…∈k  there exists ,K∈kK  such that 

( )α
kK  has only one element, and ∅=ji KK ∩  for { }pji ,,1, …∈  with 

.ji ≠  We now define 

.:
1 kk

KK
p

=
= µ  

Hence, K∈K  and, using Lemma 2.1, we get 

( ) ( ).
1

α
=

α = kk
KK

p
µ  

Therefore, ( )αK  has exactly p elements.   

Remark 2.1. Even though the proofs of (2.2) and (2.9) are similar, it 
is worth mentioning that they are not identical. In fact, to prove (2.2) we 

have that Ω∈α  and for all ( ) { }., mm xKm =ω∈ α  On the other hand, to 

obtain (2.9), we consider 0≠λ  a countable limit ordinal and a strictly 
increasing sequence ( ) ω∈ρ mm  in ,Ω  with { } ,:sup λ=ω∈ρ mm  such that 

for all λ<ρω∈ mm ,  and ( ) { },mm xK m =ρ  where mρ  depends on m. 
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In addition, we point out that the process developed to obtain (2.13) 
can also be used to get (2.3), (2.6), and (2.10). 

3. Some Results Concerning Cantor-Bendixson’s Derivative 

It is a well-known fact that, for all ( ( ) ) OR∈α
α∈ KK ,K  is a 

decreasing family of elements of .K  The following two results were first 

proved by Cantor in [5] and they imply that for all ( ( ) ) OR∈α
α∈ KK ,K  is 

in fact a strictly decreasing family of sets in K  up to a countable ordinal 
number and such that all of its subsequent derivative sets are empty. 

Lemma 3.1. If K∈K  and ,∅≠K  then .KK ≠′  

The above lemma implies the following theorem. 

Theorem 3.1. If ,K∈K  then there exists a countable ordinal number 

β  such that ( )βK  is finite. 

Since Ω  is a well-ordered set, by the previous theorem, we see that 
for all ,K∈K  there exists the smallest countable ordinal number α  

such that ( )αK  is finite. We can now give the next definition. 

Definition 3.1 (Cantor-Bendixson’s characteristic). Let .K∈K  We 
say that ( ) ω×Ω∈α p,  is the Cantor-Bendixson characteristic of K if α  

is the smallest countable ordinal number such that ( )αK  is finite and 
( ) .pK =α  In this case, we write ( ) ( )., pK α=CB  

By Theorem 2.1, for all countable ordinal number ,α  there exists a 
set K∈K  having Cantor-Bendixson’s characteristic ( ).1,α  

Furthermore, by Corollary 2.1, we have that for all { }0\ω∈p  and for 

all ,Ω∈α  there exists K∈K  such that ( ) ( )., pK α=CB  In addition, we 

obviously see that ( ) ( ).0,0=∅CB  Moreover, we have the next result 

concerning the empty set. 
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Proposition 3.1. Let K∈K  be such that ( ) ( ) ., ω×Ω∈α= pKCB  

Then, 0=p  if and only if .∅=K  

Proof. If ,∅=K  then ( ) ( ),0,0=KCB  and thus the result holds. 

Now, we suppose that .∅=/K  We consider three cases. 

● If ,0=α  then ( )0KK =  is finite. Since ,∅=/K  we have that 
( ) .00 ≠K  Hence, .0≠p  

● We suppose now that α  is a nonzero limit ordinal. Then, for all 

Ω∈β  such that ( )βα<β K,  is infinite. Therefore, ( ( ) ) α<β
βK  is a 

decreasing nested family of nonempty compact subsets of .R  By using the 
Cantor intersection theorem, we obtain 

( ) ( ) .∅≠= β

α<β

α KK ∩  

Then, ( ) ,0≠αK  and so .0≠p  

● Finally, we assume that α  is a successor ordinal. Thus, there exists 

an ordinal Ω∈β  such that .1 α=+β  Since ,α<β  it follows that ( )βK  

is infinite. Then, 

( ) ( ) ( ( ) ) .1 ∅≠′== β+βα KKK  

Therefore, ( ) .0≠αK  Hence, .0≠p    

3.1. Partition of K  

In this subsection, we show some general results concerning the 
equivalence relation ~ defined on the set K  by (1.2). 

Proposition 3.2. Let K∈21, KK  be such that .~ 21 KK  Then, 

.~ 21 KK ′′  More precisely, if f is a homeomorphism of 1K  onto ,2K  then 

1Kf ′  is also a homeomorphism of 1K ′  onto .2K ′  
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Proof. Since the image of a limit point, under a homeomorphism, is 
also a limit point, we see that ( ) .21 KKf ′=′  Hence, 21:

1
KKf K ′′′ 6  is a 

homeomorphism. Therefore, .~ 21 KK ′′    

By using transfinite induction, we get the following result: 

Corollary 3.1. Let K∈21, KK  be such that ,~ 21 KK  and let α  be 

any ordinal number. Then, ( ) ( ).~ 21
αα KK  More precisely, if f is a 

homeomorphism of 1K  onto ,2K  then ( )α
1Kf  is also a homeomorphism of 

( )α
1K  onto ( ).2

αK  

It follows from the last corollary that if 2121 ~,, KKKK K∈  and 

( ) ( ) ,,1 ω×Ω∈α= pKCB  then there exists a bijective function of ( )α
1K  

onto ( ).2
αK  Therefore, ( ) ( ) .12 pKK == αα  Hence, ( ) ( ).,2 pK α=CB  This 

last result about the Cantor-Bendixson characteristic, which was given 
by Mazurkiewicz and Sierpinski in [7], is expressed in the following 
theorem: 

Theorem 3.2. If K∈21, KK  and ,~ 21 KK  then ( ) ( ).21 KK CBCB =  

The above theorem shows that the Cantor-Bendixson characteristic is 

preserved for equivalent elements of ,K  i.e., given ,K∈K  we have that 

( ) ( ),1 KK CBCB =  for all [ ],1 KK ∈  where [ ]K  denotes the equivalence 

class of K. The reciprocal of Theorem 3.2, which was likewise given by 
Mazurkiewicz and Sierpinski in [7], is also true, and for completeness we 
give a more explicit proof of this fact in Theorem 3.3 below. In the 
following, we consider any ordinal number as a topological space with the 
order topology. Lemmas 3.2 to 3.6 will be used in the proof of Theorem 
3.3. 

Lemma 3.2. Let K∈K  be such that ( ) ( ).1,1=KCB  Then, there 

exists a homeomorphism of K onto .1+ω  
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Proof. There is an R∈x  such that { }.xK =′  The set KK ′\  is 

infinite and countable. Therefore, there exists a bijective function g of 
KK ′\  onto .ω  Now, we define 

1: +ω6Kf  

( )
( )







=ω

≠
=

.if,

,if,

xz

xzzg
zfz 6  

We see that f is a bijective function. Furthermore, since 1+ω  is a 

compact topological space, ( ) { } f,1 ω=′+ω  is an injective function, and 

( ) { }( ) { },ω==′ xfKf  we have that f is a continuous function. Moreover, 

since 1+ω  is a Hausdorff space, it follows that f is in fact a 
homeomorphism.   

Lemma 3.3. Let α  be a countable ordinal number such that .1>α  
Suppose that for all ordinal number β  such that α<β<0  and for        

all K∈K~  such that ( ) ( ) { }( ),0\,~ ω×Ω∈β= pKCB  there exists a 

homeomorphism f~  of K~  onto .1+⋅ωβ p  Then, for all K∈K  such that 

( ) ( ),1,α=KCB  there exists a homeomorphism of K onto .1+ωα  

Proof. Let K∈K  be such that ( ) ( ).1,α=KCB  Then, there exists an 

Kx ∈  such that ( ) { }.xK =α  We have that ( ) .KKx ′′⊂∈ α  Thus, x is a 

limit point of .K ′  Hence, there exists a strictly increasing or strictly 
decreasing sequence ( ) ω∈nnx  in K ′  such that it converges to x. We 

suppose that ( ) ω∈nnx  is an strictly increasing sequence in ,K ′  the other 

case is similar. 

We claim that for all ,ω∈n  we can take 0>nr  such that −< xxn  

1+< nn xr  and ., Krxrx nn ∈/+−  In fact, if we suppose the contrary, 

then there exists ω∈l  such that 

[ ] { }.or:, 1 KrxKrxrxxxx ll ∈+∈−∈⊂−− + R  
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However, the set on the right-hand side of the last inclusion is countable, 
which is a contradiction. Hence, the claim is proved. We remark that the 
sequence ( ) ω∈nnr  converges to 0 as n goes to infinity. We now define the 

sets 

( ] [ )( ),,, 000 ∞++−−∞= rxrxKK ∪∩  

[ ] [ ]( ) { }.0,,, 11 \kkkkkk ω∈++−−= −− rxrxrxrxKK ∪∩  (3.1) 

We see that for all .kk,k Kx ∈ω∈  In addition, the sequence of sets 

( ) ω∈kkK  satisfies the following properties: 

● ,KK ⊂k  for all .ω∈k  

● ,K∈kK  for all ,ω∈k  since they are countable closed subsets of K. 

● ,∅≠′∈ kk Kx  for all ,ω∈k  In fact, let .0>ε  First, we consider 

the case { }.0\ω∈k  We now take { } .0,,min:ˆ 1 >−−+−ε=ε − kkkk xrxrxx  

Since ,Kx ′∈k  there exists [( ) { }] .\ˆ,ˆ Kxxxz ∩kkk ε+ε−∈  Thus, 

[( ) { }] .Kxxxz kkkk ∩\, ε+ε−∈  Hence, .kk Kx ′∈  For the case ,0=k  

by taking { } ,0,min:ˆ 00 >−−ε=ε xrx  and proceeding in a similar way as 

in the previous case, we see that .00 Kx ′∈  

● ( ) ω∈kkK  is a pairwise disjoint sequence in .K  

● { } .KxK =
ω∈

´µ kk
 The fact that { } KxK ⊂

ω∈
´µ kk

 follows directly 

from (3.1). In order to prove the reverse inclusion, we take .Kz ∈  If 
,xz =  there is nothing else to show. Now, we suppose that .xz ≠  Since 
0→nr  as ,+∞→n  we can choose the smallest natural number ω∈N  

such that .zxrN −<  Then, .NKz ∈  

Moreover, from (3.1), we see that for all ( ) { }., xKx ⊂∈/ω∈ α
kk  

Therefore, for all ( ) ., ∅=ω∈ α
kk K  Thus, for all ( ) ( )kkkk pK ,, β=ω∈ CB  

ω×Ω∈  implies that .0 α<β< k  We remark that for all ∅≠ω∈ k,k K  
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implies that { }.0\ω∈kp  Using the hypothesis, we conclude that for all 

,k ω∈  there exists a homeomorphism kf  of kK  onto .1. +ωβ k
k p  We 

now define the function 

1: +τ6Kf  

( )

( )

( ) { }













=

ω∈∈++⋅ω

∈

= ∑
−

=

β

,if,

,0\,if,1

,if,
1

0

00

xz

Kzzfp

Kzzf

zfz
j

j
j

τ

kkk

k

6  

where 

.:sup::
0 











ω∈⋅ω=⋅ω= β

=

β

ω∈
∑∑ npp

n

k
k

k
k

kkτ  

(a) First, we remark that f is an injective function. In fact, let 
Kvu ∈,  be such that ( ) ( ).vfuf =  If xu =  and ,qKv ∈  for some 

,ω∈q  then ( ) ( ),0 ufpvf q
=<⋅ω≤ β

=∑ τkk
k  which is a contradiction. 

Thus, there exists ω∈r  such that .rKu ∈  We suppose, by 
contradiction, that .rq ≠  Without loss of generality, we may assume 
that .rq <  Then, 

( ) k
k

k
k

kk ppvf
rn

⋅ω≤⋅ω≤ β
−

=

β

=
∑∑

1

00
 

( ) ( ),1
1

0
ufufp r

r
=++⋅ω< β

−

=
∑ k
k

k  

which is not possible. Hence, .rq =  Thus, 

( ) ( ) ( ) ( ),11
1

0

1

0
vfpvfufufp q

q

q

q
++⋅ω===++⋅ω β

−

=

β
−

=
∑∑ k
k

k
k

kk  

implies that ( ) ( ).vfuf qq =  Using the fact that qf  is an injective function, 

it follows that .vu =  
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(b) We will now show that f is onto. In fact, let .τ≤γ  If  ,τ=γ  we 

have that ( ) .γ== τxf  If ,τ<γ  we take { ∑ =
≤γω∈= nnM 0:min: k  

}.kk p⋅ωβ  In case .,0 00 pM ⋅ω≤γ= β  Since, 0f  is onto, there exists 

KKz ⊂∈ 0  such that ( ) ( ) .0 γ== zfzf  We now assume that 

{ }.0\ω∈M  Then, 

.1
0

1

0
k

k
k

k

kk pp
MM

⋅ω≤γ≤+⋅ω β

=

β
−

=
∑∑  

Thus, there exists an ordinal number µ  such that 

.1
1

0

1

0
M

MM
ppp M ⋅ω+⋅ω≤γ=µ++⋅ω ββ

−

=

β
−

=
∑∑ k
k

k
k

kk  

Then, .MpM ⋅ω≤µ β  Since Mf  is onto, there exists KKz M ⊂∈  such 

that ( ) .µ=zfM  So, ( ) ( ) .11
0 γ=++⋅ω= β−

=∑ zfpzf M
M

kk
k  

(c) Moreover, for all 
k

k Kf,ω∈  equals an ordinal number, i.e., a 

constant function, plus a continuous function. Thus, for all 
k

k Kf,ω∈  is 

a continuous function. In addition, since ( ) ω∈kkK  is a pairwise disjoint 

sequence of open subsets in K, it follows that f is a continuous function at 

any element of .kk Kω∈µ  Furthermore, f is also continuous at the point 

.Kx ∈  If fact, let µ  be an ordinal number such that .τ<µ  There exists 

ω∈m  such that .0 j
m
j pj ⋅ω<µ β
=∑  We claim that 

( )( ) ( ).1,, +µ⊂+− τKrxrxf mm ∩   (3.2) 

Let ( ) ., Krxrxy mm ∩+−∈  If ,xy =  then ( ) ( ) ( ).1, +µ∈== ττxfyf  

We now suppose that .xy ≠  Then, there is ω∈i  such that .iKy ∈  

Since ( ) ω∈nnr  is a strictly decreasing sequence of positive numbers, we 

conclude that .mi >  Then, 
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( ) ( ) .1
0

1

0
µ>⋅ω≥++⋅ω= β

=

β
−

=
∑∑ j

m

j
ij

i

j
pyfpyf jj  (3.3) 

Moreover, 

( ) ( ) ij

i

j
ij

i

j
ppyfpyf ijj ⋅ω++⋅ω≤++⋅ω= ββ

−

=

β
−

=
∑∑ 11

1

0

1

0
 

.1
0

+<≤⋅ω= β

=
∑ ττj

i

j
pj  (3.4) 

From Equations (3.3) and (3.4), we see that ( ) ( ).1, +µ∈ τyf  Thus, 

Equation (3.2) follows. Hence, f is continuous at the point x. 

By (a) and (b), f is a bijective function. In addition, by (c), f is a 
continuous function of K onto .1+τ  

We will now prove that .αω=τ  In order to get this, let { :sup:~
kβ=α  

} .OR∈ω∈k  We see that .~ α≤α  

(i) First, we consider the case .~ α<α  Then, .1~ α≤+α  Thus, for all 
( ) ., 1~

∅=ω∈ +α
kk K  Using transfinite induction, and proceeding as in the 

proof of (2.2), we get 

( ) ( ) { } { }.1~1~
xxKK == +α

ω∈
+α ´µ kk

 

Then, .1~ α=+α  Since for all ,,
~

kk
kk pp ⋅ω≤⋅ωω∈ αβ  we see that 

.1~~~ α+αα

ω∈

αβ

ω∈

ω=ω=ω⋅ω=









⋅ω≤⋅ω= ∑∑ k
k

k
k

k ppτ  (3.5) 

On the other hand, we claim that 

{ } .~: 0=α=βω∈ nn   (3.6) 

In order to prove (3.6), we first suppose, by contradiction, that for all 

.~, α<βω∈ nn  Thus, for all ,~1, α≤+βω∈ nn  and we get ( ) ⊂α~
nK  
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( ) .1 ∅=+βnnK  Moreover, we see that ( ) ( ) { } { }.
~~

xxKK == α
ω∈

α ´µ kk  Then, 

,~ α=α  which is a contradiction. Hence, there exists at least one ω∈n  
such that .~α=βn  We now suppose, again by contradiction, that the set 

{ } ∅≠α=βω∈ ~: nn  is finite. Let { } .~:max: ω∈α=βω∈= nnN  We 

have that for all ω∈k  such that .~, α<β> kk N  Then, 

( ) ( ) { } ( ) { }.
~

0

~~
xKxKK

N
´µ´µ α

=
α

ω∈
α == kkkk

 

It follows that, ( )α~K  is a finite set. Hence, ( ) ( ) ,1~
∅== +αα KK  which is 

a contradiction with the fact that ( ) { }.xK =α  Therefore, (3.6) is proved. 

We now define, for all ,ω∈n  

{ } .~and:: ω∈α=β≤ω∈= kkk nmn  

Then, for all ,ω∈n  we have that 

.
~

0
n

n
mp ⋅ω≥⋅ω αβ

=
∑ k
k

k  

For this reason, 

{ }ω∈⋅ω≥⋅ω= αβ

ω∈
∑ nmp n :sup

~
k

k

kτ  

.1~~ α+αα ω=ω=ω⋅ω=  (3.7) 

Using (3.5) and (3.7), we conclude that .αω=τ  

(ii) We now consider the case .~ α=α  We claim that for all ,ω∈k  
.~α<βk  In fact, if there exists ω∈l  such that ,~α=βl  then 

( ) { } ( ) { } ( ) ( ) { },xKKxKxK lll
iil ===⊂ αββ

ω∈
β ´µ´  

contradicting the fact that ( ) .0>=β
ll pK l  We now remark that α  is a 

limit ordinal. In order to prove the last assertion, we suppose, for the 
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sake of contradiction, that α  is a successor ordinal. Then, there exists an 
ordinal number λ  such that .1+λ=α  Thus, for all ,~, α=α<λ≤βω∈ kk  

which is a contradiction with the definition of .~α  On the other hand, 

since for all ,, τ≤⋅ω≤ωω∈ ββ
k

kkk p  it follows that 

{ } .:sup
~

τ≤ω∈ω=ω=ω βαα kk   (3.8) 

We now define, for all ,ω∈n  

{ },,,1,0:max: nn …=β=β kkk  

{ }.,,1,0:max: npp n …== kkk  

Then, for all ,ω∈n  we see that 

,1

0

α+βββ

=

ω≤ω<⋅⋅ω≤⋅ω∑ n
n

n npp
n

kkk
kk

k

 

where in the last inequality we have used the fact that .1 α≤+β<β nn kk  

In consequence, 

.αβ

ω∈

ω≤⋅ω= ∑ k
k

k pτ   (3.9) 

Equations (3.8) and (3.9) imply that .αω=τ  

Therefore, f is a bijective and continuous function of K onto 

.11 +ω=+ ατ  In addition, since 1+ωα  is a Hausdorff space, we 

conclude that f is a homeomorphism of K onto .1+ωα    

Lemma 3.4. Suppose that K and F are closed subsets of R  such that 

,
D

∩∩ FKFK =  where
D
F  is the set of all interior points of F. Then, for 

all ,OR∈α  we have that 

( )( ) ( ) .FKFK ∩∩ αα =   (3.10) 
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Proof. We proceed by transfinite induction. 

● The case 0=α  is immediate. 

● We now suppose that the result is true for .OR∈α  Then, 

( )( ) ( )( )( ) ( ( ) ) ( ( ) ) ( ) ,11 FKFKFKFKFK ∩∩∩∩∩ +αααα+α ⊂′′⊂′=
′

=  

where in the last expression we have used the induction hypothesis and 
the fact that F is closed. In order to prove the reverse inclusion, let 

( ) .1 FKx ∩+α∈  Since K is closed, .
D

∩∩ FKFKx =∈  Thus, there 

exists 0>r  such that ( ) ., Frxrx ⊂+−  Let .0>ε  We now take 

{ } .0,min:~ >ε=ε r  Then, 

( ) { }( ) ( ) ( ) { }( ) ( ) FKxxxKxxx ∩∩∩ αα ε+ε−=ε+ε−≠∅ \~,~\~,~  

( ) { }( ) ( )( ).\, αε+ε−⊂ FKxxx ∩∩  

Hence, ( )( ).1+α∈ FKx ∩  Therefore, ( )( ) ( ) .11 FKFK ∩∩ +α+α =  

● Finally, let 0≠λ  be a limit ordinal number. We suppose that for 

all OR∈β  such that ( )( ) ( ) ., FKFK ∩∩ ββ =λ<β  Then, 

( )( ) ( )( ) ( ( ) ) ( ) ( ) .FKFKFKFKFK ∩∩∩∩∩ ∩∩∩ λβ

λ<β

β

λ<β

β

λ<β

λ ====  

This concludes the proof.   

Lemma 3.5. Let α  be a countable ordinal number such that .0>α  

Let { }.0\ω∈p  Suppose that for all K∈K~  such that ( ) ( ),1,~ α=KCB  

there exists a homeomorphism of K~  onto .1+ωα  Then, for all K∈K  
such that ( ) ( ),, pK α=CB  there exists a homeomorphism of K onto 

.1+⋅ωα p  
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Proof. Let K∈K  be such that ( ) ( ) ., ω×Ω∈α= pKCB  We write 

( ) { },,,, 21 pxxxK …=α  where ,ji xx <  for all { }pIji ,,1:, …=∈  with 

.ji <  We see that for all { },1,,1 −∈ p…k  there exists ( )1, +∈ kkk xxz  

such that .Kz ∈/k  We now consider the sets 

( ],, 11 zKK −∞= ∩  

[ ] { },12,,1 −∈= − p,,zzKK …∩ kkkk  

[ ).,1 ∞+= −pp zKK ∩   (3.11) 

Proceeding as in the proof of Lemma 3.3, it is possible to show that the 
finite family ( ) IK ∈kk  satisfies the following properties: 

● ,KK ⊂k  for all .I∈k  

● ,K∈kK  for all .I∈k  

● ,∅≠′∈ kk Kx  for all .I∈k  

● ( ) IK ∈kk  is a pairwise disjoint finite sequence in .K  

● .KK
I

=
∈ kk
µ  

By using Lemma 3.4, we have that for all ( ) { }., kkk xKI =∈ α  

Therefore, for all ( ) ( ).1,, α=∈ kk KI CB  Thus, for all ,I∈k  there exists 

a homeomorphism kf  of kK  onto .1+ωα  We now define the function f 

given by 

1: +τ6Kf  

( )
( )

( ) { }







∈∈++ω

∈

= α
−

=
∑ ,1\somefor,if,1

,if,
1

1

11

IKzzf

Kzzf
zfz

j
kkk

k
6  
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where 

.1
11

p
p

j

p

j
⋅ω=⋅ω=ω= α

=

αα

=
∑∑τ:  

Proceeding in a similar fashion as in the items (a), (b), and (c) in the proof 

of Lemma 3.3, we obtain that f is a homeomorphism of K onto .1+⋅ωα p  

  

Lemma 3.6. Let α  be a countable ordinal number such that .0>α  
Let { }.0\ω∈p  Then, for all K∈K  such that ( ) ( ),, pK α=CB  there 

exists a homeomorphism of K onto .1+⋅ωα p  

Proof. We will use strong transfinite induction. By Lemmas 3.2 and 
3.5, the result holds for .1=α  We now consider Ω∈α   such that ,1>α  
and we suppose that the result is true for all ordinal number β  such that 

.0 α<β<  Lemmas 3.3 and 3.5 imply the result for .α  Hence, the lemma 

is proved.   

Next result contains the reciprocal of Theorem 3.2. 

Theorem 3.3. If K∈21, KK  and ( ) ( ),21 KK CBCB =  then .~ 21 KK  

Proof. If ( ) ( ) ( ) ,,021 ω×Ω∈== pKK CBCB  we get .21 pKK ==  

Then, .~ 21 KK  

We now suppose that ( ) ( ) ( ),,21 pKK α== CBCB  with .0>α  By 

Proposition 3.1, { }.0\ω∈p  By Lemma 3.6, there exist two 

homeomorphisms, g of 1K  onto 1+⋅ωα p  and h of 2K  onto .1+⋅ωα p  

Therefore, 21
1 : KKghf 6D−=  is a homeomorphism of 1K  onto .2K  

Hence, .~ 21 KK   

Theorems 3.2 and 3.3 fully characterize the partition of K  by the 
Cantor-Bendixson characteristic. 
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3.2. Cardinality of the set K   

Combining the previous results we obtain the cardinality of .K  

Theorem 3.4. The set ,K  given by (1. 4), has cardinality .1  

Proof. We define the function 

j { }( )( ) ( ): \ 0 0, 0Ω× ω6 ∪CB K  

[ ] j [ ]( ) ( ) ( ), .K K K p= = α6 CB CB   (3.12) 

By Theorem 3.2 and Proposition 3.1, we see that jCB  is well-defined. 

Moreover, Corollary 2.1 implies that jCB  is a surjective function. 

Furthermore, by Theorem 3.3, jCB  is an injective function. Then, 

{ }( )( ) ( ) .0,00\ 1=Ω=ω×Ω=ω×Ω= ∪K   

Last theorem shows that 

,2 010 c=≤=<  K  

where c  is the cardinality of .R  

3.3. A “primitive” related to the Cantor-Bendixson derivative of 
compact subsets of the real line 

We end this paper with a last theorem that we can view as a 
generalization of Theorem 2.1 and Corollary 2.1 given in Section 2. The 
next result shows that for any compact subset of the reals, there is a 
primitive-like set associated to its Cantor-Bendixson derivative. 

Theorem 3.5. Suppose that .Ω∈α  Let F be a compact subset of .R  

Then, there exists a compact set R⊂F  such that ( ) .F=αF  

Proof. If ,0=α  we define F=F  and the result holds. 

From now on, we suppose that .0>α  There are two cases. First, if F 
is perfect, i.e., ,FF ′=  we can take ,F=F  and the result follows. 
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We now assume that .FF ′≠  Since FF ′\  is the set of all isolated 
points of F, we have that ∅≠′FF \  is countable. Hence, =′FF \  
{ },: Inxn ∈  where ,ω⊂≠∅ I  and ,mn xx ≠  for all Imn ∈,  with 

.mn ≠  Furthermore, for all ,In ∈  there exists ( )1
1,0
+

∈ nrn  such 

that ( ) { }., nnnnn xFrxrx =+− ∩  By Theorem 2.1, we see that for all 

,In ∈  there exits K∈nK  such that ( ]nnnn xrxK ,−⊂  and 
( ) { }.nn xK =α  Since ( ]( ) Innnn xrx ∈− ,  is a pairwise disjoint sequence of 

intervals, we see that ( ) InnK ∈  is a pairwise disjoint sequence in .K  We 

now define the set R⊂F  given by 

.: FKnIn
∪

∈
= µF   (3.13) 

Claim 1. F  is a compact subset of .R  

In fact, let ( ) ω∈kkz  be a sequence in F  such that R∈→ zzk  when 

.k +∞→  There are three cases. 

(i) If { }Fz ∈ω∈ kk :  is infinite, there exists a subsequence 

( ( ) ) ω∈φ kkz  in F, where ωωφ 6:  is a strictly increasing function. Since 

F is closed, we conclude that .F⊂∈ Fz  

(ii) We now suppose that there exists Im ∈  such that 
{ }mKz ∈ω∈ kk :  is infinite. Similarly as in the previous case, we obtain 

that .F⊂∈ mKz  

(iii) Finally, we assume that for all { }nKzIn ∈ω∈∈ kk :,  is a 

finite set and { }Fz ∈ω∈ kk :  is also finite. Thus, there exists a 

subsequence ( ( ) ) ,ω∈/ kkvz  where ωω/ 6:v  is a strictly increasing 

function, and there is also a strictly increasing function I6ωσ :  such 
that for all ω∈k  

( ) ( ) ( ( ) ( ) ( ) ]., kkkkk σσσσ/ −⊂∈ xrxKzv  (3.14) 
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In order to prove the last assertion, we see that there exists In ∈0  such 

that { } .: 0 ∅≠∈ω∈ nKzkk  Then, there is ω∈0k  with .00 nKz ∈k  We 

thus define  ( ) 0:0 k=/v  and ( ) .:0 0n=σ  We now get In ∈1  with 01 nn >  

and such that { } .,: 01 ∅≠>∈ω∈ kkk k nKz  So, there exists ω∈1k  

with 01 kk >  and such that .11 nKz ∈k  We define ( ) 1:1 k=/v  and 

( ) .:1 1n=σ  By continuing this process, functions v/  and σ  are recursively 

obtained. From (3.14), we have that for all ( ) ( ) ( ) <<−ω∈ σ/σ kkkk rzx v,  

( ) .1
1
+σ k

 As ( ( ) ) ω∈/ kkvz  converges to z, it follows that ( ( ) ) ω∈σ kkx  also 

converges to z. Since, the elements of the last sequence belong to F, and F 
is closed, we conclude that .F⊂∈ Fz  

From (i), (ii), and (iii), F  is a closed subset of .R  Moreover, since F is 
bounded, there exist ,, R∈ba  with ,ba <  such that [ ]., baF ⊂  Then, 

[ ],,1 ba −⊂F  i.e., F  is bounded. Hence, F  is a compact subset of .R  

Claim 2. ( ) .F=αF  

Actually, we will show the following more general result: For all 
countable ordinal number Ω∈β  such that α≤β  

( ) ( ) .FKnIn
∪β

∈
β = µF  (3.15) 

In order to prove (3.15), we proceed by transfinite induction as in 
Theorem 2.1. 

(a) If ,0=β  then the result holds immediately. 

(b) We now suppose that (3.15) is true for a given Ω∈β  such that 

.α<β  We note that for all ( ) ( )., 11 +β+β ⊂∈ FnKIn  Then, 

( ) ( ).11 +β+β
∈

⊂ FnIn
Kµ  

Furthermore, by the induction hypothesis, ( ).β⊂ FF  Then, ( ).1+β⊂′ FF  
Moreover, 
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{ } ( ) ( ) ( ).\ 11 +β+β
∈

α
∈∈

⊂⊂==′ FnInnInnIn
KKxFF µµµ  

Hence, 

( ) ( ).11 +β+β
∈

⊂ FFKnIn
∪µ  (3.16) 

In order to show the reverse inclusion, we take ( ).1+β∈ Fx  Using the 
induction hypothesis, we see that 

( ) ( ( ) ) ( )( ) ( )( ) .1 FKFKx nInnIn
′

′
=

′
=′=∈ β

∈
β

∈
β+β ∪∪ µµFF  

Using now Claim 1, we have that F  is closed. Then, 

( ) ( ) ( ) .1 FKx nIn
∪β

∈
β+β =⊂∈ µFF  

If ,Fx ∈  there is nothing left to show. On the other hand, if ,Fx ∈/  

there exists Im ∈  such that ( ) ( ]., mmmm xrxKx −⊂∈ β  We now 

assume, by contradiction, that ( ).1+β∈/ mKx  Then, x is an isolated point of 
( ).β
mK  

Since ,Fxx m ∈≠  there is { }xxrxx mmm −+−<ε< ,min0  such 

that 

( ) ( ) { }., xKxx m =ε+ε− β∩  

Moreover, as ( ) ( ),,, mmm xrxxx −⊂ε+ε−  we conclude that for all 

In ∈  with ,mn ≠  

( ) ( ) ., ∅=ε+ε− β
nKxx ∩  

Then, 

( ) ( ) { }., xKxx nIn
=ε+ε− β

∈
µ∩  
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Therefore, x is an isolated point of ( ).β
∈ nIn Kµ  Since ,Fx ∈/  and F is 

closed, we see that .Fx ′∈/  Hence, ( )( ) ,
′

∈ β
∈ nIn Kx µ  which is 

contradictory. In consequence, 

( ) ( ).11 +β
∈

+β ⊂∈ nInm KKx µ  

Thus, summarizing, we can conclude that 

( ) ( ) .11 FKnIn
∪+β

∈
+β ⊂ µF  (3.17) 

From (3.16) and (3.17), we get 

( ) ( ) .11 FKnIn
∪+β

∈
+β = µF  

(c) Finally, let 0≠γ  be a limit ordinal such that α≤γ  and we 

assume that for all ordinal number δ  such that ,γ<δ  

( ) ( ) .FKnIn
∪δ

∈
δ = µF  (3.18) 

Using (3.18), we obtain 

( ) ( ) FKFK nInnIn
∪∪ ∩ 













= δ

γ<δ
∈

γ
∈

µµ  

( )( ) FKnIn
∪∩ δ

∈
γ<δ

⊂ µ  

( )( )FKnIn
∪∩ δ

∈
γ<δ

= µ  

( )δ

γ<δ

= F∩  

( ).γ= F  (3.19) 



BORYS ÁLVAREZ-SAMANIEGO and ANDRÉS MERINO 32

In order to show the other inclusion, we take ( ).γ∈ Fx  Using the 
induction hypothesis (3.18), we see that 

( ) ( ) ( )( ).FKnIn
∪∩∩ δ

∈
γ<δ

δ

γ<δ

γ == µFF  

Then, either Fx ∈  or for all ordinal number δ  such that ,γ<δ  there 

exists In ∈  such that ( ).δ∈ nKx  If ,Fx ∈  then there is nothing else to 

be done. If ,Fx ∈/  there is IN ∈  such that ( ) .0
NN KKx =∈  We now 

assume, to get a contradiction, that there is an ordinal number 0δ  with 

γ<δ0  and such that ( ).0δ∈/ NKx  Since there is Il ∈  with Nl ≠  such 

that ( ) ,0 ll KKx ⊂∈ δ  we obtain a contradiction with the fact that 

.∅=Nl KK ∩  Hence, for all ordinal number δ  such that 
( )., δ∈γ<δ NKx  In consequence, 

( ) ( ) ( ).γ
∈

γδ

γ<δ

⊂=∈ nInNN KKKx µ∩  

Thus, 

( ) ( ) .FKnIn
∪γ

∈
γ ⊂ µF  (3.20) 

From (3.19) and (3.20), we have that 

( ) ( ) .FKnIn
∪γ

∈
γ = µF  

By (a), (b) and (c), we obtain (3.15) for all countable ordinal number β  

such that .α≤β  Finally, using (3.15) with ,α  we get 

( ) ( ) { } ,FFxFK nInnIn
===

∈
α

∈
α ∪∪ µµF  

which finishes the proof.  
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